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1. ABSTRACT

Results of a study of three gpecific items of interest
to the development ¢of prccedures for estimating initial radiation
& protection factors for buildings are presented. These include:

{ 1. The effects of new crcas section dats for

nicroger and oxygen on initial radistion
envirunments avre presented;

8 | 2. Caicula ions of delaysd radiation envirom-
ments Jr large yield weapons are presented.
The calculations are based on the FUITEA
! code; and

-«

3. Senzitivity snalyses of the effects of
composizicn, thickness, and desigrn charsge-
texristics cf well constructions are
presented.
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2. SUMMARY

This report presents the results of a study conducted
for the Defense Civil Preparedness Agency (DCPA) by Science
Applications, Inc. (SAI) to provide supplementary data for the
development of a methodology to determine initial radiation pro-
tection factors (IPF) for civil defense applications. These data
involve characterization of free-field radiation environments
based on the best available cross section data, determination of
the importence of delayed radiations for large yield nuclear
weapons, and presentation of procedures which would allow the
IPF assessment methodology to include the effects of comstruction
material composition variations and design characteristics.
Suggestions are presented for inclusion of the results of this
study into procedures fc~ es_imating IPF for civilian structures.
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3. TNTRODUCTION AND BACKGROUND

The Defenge Civil Preparedness Agency (DCPA) has for
the past faw years been in the process of developing procedures
to determine the protection which buildings will pr-vide from
initial nuclear radiation (INK) other initial ‘ects asco-
ciated with nuclear weapons explesions. These procedures, which
are similar to procedures developed for fallcut radiation, are
presently being defined. This report addresses thresz specific

items which are necessary to finalize procedures for estimating
initial radiation protection facters (IPF):

1. The determiniation of the effect of new cross
section data on free £ield radiation environ-

ments and their impact on earlier INR shielding
analysis,

2. The evaluation of delayed neutron and gamma vsy
environments from large yield weapons, and

3. The analysie of rhe sensitivity of calculated 1
dose to the composition, thickness, and design -
characteristics of walls in stzuctures.

These three items are addressed respectively in ZThapters 4, 35,
and 5.

The: free field radiation environments preseatly being
used for IPF calculations are based on the work of E. A. Straker
and M. L. Gritznar(a). These air transport results were obtained
in 1969 using cross section data from ENDF/B~ITI. 1In the lagt few
years, substantial effort has been spent by the Defense Nuclear
Agency (DNA) to obtain better evaluations of the nitrogen and
orvgen cross sections. The impact of the newe: cross section
evaluations are reflected in the analysis des.ribed in Chapter 4.
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The development of the NUIDEA Code sponsored by DNA
and carried out by SAI provides a new capability for estimating
the delayed radiatiocun dose from large yield nuclear weapons.
Results obtained from this ccde are presented in Chapter 5.

For initial nuclear radiation, the transport of neu-
trons and the production of secondary gamma rays is not only a
function of the mass thickness of shielding material, but also
a function of the material cowmposition. Previous caicalations
of barrier factors for neutrons are based on a fixed concrete
composition and do not ccnsider variations in proteciion factors
which may arise from variations in concrete composition and
construction methods. Chapter 6 describes a series of transport
calculations performed for various thicknesses and several con-
crete compositions of interest. In addition, perturbation cal-
culations are presented which show the effect of specific chemical
constituents of concrete un the shielding properties. Transport
results are also shown for several wall and ronf constructions.
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4. FREE FIELD ENVIRONMENT —~ PROMPT

Previous recommendations specifying the initial radia-
tions from nuclear weapons weva made in 1972 by <he ad hoc Sub-
committee on Radiation Shielding which is part of the National
Academy of Sciences Advisory Committee on Civil Defense(l).

These data have been used for civil defense shielding analyses
and, in particular, for the determination of radiation protec~
tion factors provided by structures. During the late 1960's

and early 1970's, considerable effort was expended by the

Defense Atomic Support Agency (DASA) and later the DNA to develop
methods for calculating radiatiom transport in air and to improve
the basic cross section data required fur these calculations.

The results of these efforts can now be used to revise the free
field radiation enviromments recommended in Reference 1.

There are basically two revisions considered in this
report. The first reported in this chapter is a revision to the
prompt neutron and secondary gamma ray envirorment due to updated
miclear cross sections derived from DNA sponsored research(z).
The calculations reported in this chapter were performed with
the one-dimensional discrete ordinates code, ANISN(3). The
cross sections for nitrogen and oxygen used for the air trans-
port calculations were obtained from the DNA few group library
referenced in Reference 2. Additional problem data and results
of the calculations are described below.

4.1 TRANSPGRT PROBLEM DATA

4.1.1 Source Spectra

The air transport calculations were performed using
the nominal "typical" thermonuclear sourne spectra which has
beent the convention to use in problems of this type(a). This
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gource distributions, grouped in the DNA few groups library

group structure, is given in Table 1. Only the neutrom source »
has been considered. The omission of th prompt gamma ray

source is justifiable because the prompt p = ray component

of the prompt dose is significant only very near the source. -

At distances of interest for civil defense applications, the prompt 3
total dose is cdominated by neutrons and cecondary gamma rays.

4.1.2 Cross Sections

The DNA few group library is a coupled neutron and
gamma ray multigroup cross sections library. There are 37
neutron groups and 21 gamma ray groups. The scattering angular
distributions are approximated by a P; Legendre expansion.

The air density was taken to be 0.001lll gm/cm;. At
this density the ztomic density of nitrogen and oxygen are
3.635}:].(}'5 and 9.620310-6 atcms per barn-cm, respectively. All
other constituenteg cf air were conside.ed to be negligible.

4$.1.3 Response Functions

In addition tc¢ calculations of the neutron and second- 1
ary gamma ray fluxes, tabulations have been made of integral ~
regponse data appropriate for estimating prompt radiation doses
to humins. For this purpose the Snyder Neufeld neutron response
function and the Henderson tissue gamma ray response function
have been used. This choice of response function ie consistent -
with that which has been used previously. These response func-
tions are given in Tables 2 and 3.

4.1.4 Calculational Method

The neutron and secondary gamma ray flux from a
point source in air was calculated using the one-dimensional
discrete ordinates code, ANISN. An §,, angulg?‘quadratuze=was
used. The transport was carried to 333 gm/cm” in air so that




) Table 1.

Typical Thermonuclear Source Distribution.

Group
) ¥umber

Upper Energy
Boundary (MeV)

Group Fraction
{Neutrons/Source Neutron)
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.5(=1)
. 3(~1)
1.1(-1)
5.2(-2)
2.5(~2)
2.2(~2)
1.0(-2)
3.4(=3)
1.2(-3)
5.8(=4)
1.0(~4)
2.9(=5)
1.1(~%)
3.1(~6)
1.1(-6)
£.10-7)
1.0(-11)
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0.

1.89(-2)
9.34(-3)
2.66(~2)
1.67(-2)
1.69(-2)
1.24(=2)
7.48(-2)
6.82(-3)
6.78(-3)
1.03(-2)
1.81(~2)
3.62(=3)
1.24(-2)
2.60(-2)
2.37(=2)
3.75(=3)
2.56(~2)
6.44(~2)
8.85(~2)
9.14/(-2)
1.16(~2)
1.11(-1)
5.40(~2)
5.68(-~3)
9.26(-2)
1.16(-1)
7.38(~2)
7.32(=2)
2.03(-2}
1.90(-3)
0.
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Table 2.

Snyder Neufeld Neutron Response Function.

Group Upper Energy Response Function
Numbar Boundary (MeV) (rads/n/cm?)
i 19.6 7.00558(=9)
2 16.9 7.00558(-9)
3 4.9 7.00558(~9)
& 14,2 7.00558(-9)
5 13.8 7.00558(-9)
5 12.8 7.00558(-9)
7 12,2 7.00558(~9)
8 11.1 7.60558(-9)
9 10.0 7.05279(-9)
10 9. 7.10289(-9)
11 8.2 7.03619(-9)
12 7.4 6.71089(-9)
13 6.4 6.07429(-9)
14 5.0 5.69619(-9)
15 4.7 5.37649(~9)
16 4.1 4.86219(~9)
17 3.0 4.47859(-9)
18 - 2.4 4.34239(~9)
19 2.3 4.22839(-y)
20 1.8 3.97819(-9)
21 1.1 3.34990(-9)
22 5.5(~1) 1.84200(-9)
23 1.6(-1) 1.23350(~9)
24 1.1(-1) 9.51589(~10)
25 5.2(=2) 6.92769(~10)
26 2.5(=2) 5.90470(-19)
27 2.2(-2) 5.52389(-10)
28 1.0(-2) 5.57940(-10)
29 3.4(=3) 6.00199(-10)
30 1.2(-3) 6.16599(-10)
31 5.8(=4) 6.72759(-10)
3z 1.0(~4) 5.34589(-10)
33 2.9(=5) 3.88369(-10)
34 1.1(-5) 3.43046(-10)
35 3.1(-6) 3.27479(~10)
36 1.1(-6) 3.23040(-10)
37 4.1(-7) 3.20525(~-10)
1.0(-11)
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Table 3.

Henderson Tissue Gamma Ray Response Function.

Group
Number

Upper Energy
Boundary (MeV)

Response Function

(rads/#=.1ge % photon/cm?)

SRRl i rf o o R N

14,
1y,
8.
7.
6.
5.

)
.

L] [ * . * [ L]

[« V]
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¢« s 0
w
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3.20810(-9)
2.4722(~9}
2.08470(-9)
1.86510(-9)
1.66130(=9)
1.44310(-9)
1.19710(-9)
1.01110(-9)
8.70689(-10)
5.64059(~10)
5.64059(~10)
4.10599(~10)
2.93009(~10)
1.922F0(-10)
1.10590(~10)
5.48209(-11)
3.71130(=11)
3.67239(-11)
6.32728(-11)
1.41590(~10)
4.40629(~10)
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the spectra will be free of boundary leakage effects to at
least 250 gxn/c:m2 er a distance of 2.25 km.

4.2 FREE FIELD NEUTRON AND SECONDARY GAMMA RAY SPECTRA

Figure la-j shows the n. .:ron fluence per unic lechazgy
per source reutron for several ranges from 0.2 km to 2 km. The
spectra can be observed to harden rap:.dly with incressing penetra-
tion in air to abcut 1 km. Beyond 1 km the shape of the spectrum
is changing slowly although the total intensity continues tc
decrease with increasing penetration.

Figure 1f which shows the fluence per unit lethargy
at 1200 m also gives a plot of the energy spectra recommended
in Reference 1. To facilitate a comparison with the prompt
environments reported in Reference 1, the present results are
also presented in th: same format. Figures 22-p show the free
field neutron fluence multiplied by the geometry factor éﬂR‘?‘
versus vange. Only a few of the DNA few group library groups
correspond directly withk the group structure utilized in
Reference 1.

The previous liscussion has focused on spectral dif-
ferences which result by using more recent cross section evalua-
tions. It is alic useful to examine the differences in the
angular distributions as a function of distance using these
newer data. A convenient method of illustrating these differ-
ences is to make direct comparison of the expansion coefficients
of the angular distributions at various distances from a point
source. Using Chis procedure provides an adequate summary of
the important conclusions, yet presents the data in a readily
usable form. In Table 4, we present the ratio of the harmonic
coefficients, P, through P,, of the angular dose distributious
as & function of distance from the source. The dose response
functions and source distributions used were described previously.
Examination of these results indicate that the changes in these
digtributions become more pronounced at larger distances, but
are still quite small, i.e., less than 30%.
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) Table 4.

Ratios of Expansion Coefficients of Dose Angular

Distribution at Various Ranges (New Data/0ld Data).

’ I Range (m) P0 51 Py P3
800 0.95 0.90 0.85 0.82
i 1200 0.91 0.87 0.83 0.80
1600 0.87 0.84 0.81 0.80
2000 0.83 G.82 0.80 0.79
¥
)
)
s
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Figure 3a~j shows the secondary gamma ray fluence
per unit lethargy per source neutron for several ranges from
0.2 to 2 km. The spectra can be seen to be relatively insensi-
tive to range. Figure 2f compares the secondary gamma ray
fluence per unit lethargy of 1200 m with that reported in
Reference 1. The spectra are also plotted as a function of
range in Figure 4 in the format of Reference 1 to facilitate
a comparison with previous work.

Figures 5a-c shows the Snyder Neufeld Tissue dese, the
first moment of the dose, and the second moment of the dose as z
cunction of range. Figures 6a-c shows the Henderson Tissue gamma
ray dcse, first and second moments of the dose, versus range.
These plots are normalized to one source neutron.
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5. FREE FIELD ENVIRONMENT ~ DELAYED

i BACKGROUND

The delayed radiation environment ccnsists of neutrons
and gamma rays emitted by the fission products from a nuclear
weapon burst. The distinction between delayed radiatiorn and
fallou* radiation is that delayed radiation is that radiation
received while the fission products are contained in the fireball.
Delayed radiation is defined to be part of the initial radiation
enviroument which includes all radiation received during the
first minute after the weapon burst. Even for yields on the order

of 10 MT, 35% of the delayed radiation dose is received within
30 seconds from the weapon detonation.

) In the past, the pradiction of delayed radiation en-
vironments has been a lees than satisfactory situation. The ’
problem is a complex one, complicated by the fact that the
radiation source is contained in a rising and expanding fireball

; and the transport of radiation is cccurring in an atmosphe~e whose ;
density distribution is changing due to the expanding shoc.. front.
For multiple bursts the problem is further complicated by inter-
acting shock fronts and the possibility of interacting fireballs

] and is not well understood. Although, in principle, the problem
could be solved using radiaticn hydrodynamics codes, the physiczal
size of the problem precludes this as a practical means to a
solution. Historicaily, empirical models based on test data hzve

. been developed and applied to the prediction of the delayed en-

: viromments. Unfortunately, sufficient data are not available

% to construct an empirical model for the vange of yields, burst
heights, and weapon types of interest. More recently the problem

- Py




has been approached by phenomenology mocdeling as exemplified
by the computer code, NHIDEA(G).

THE NUILDEA CODE

The development of the NUIDEA Code was sponsored by
the Defense Nuclear Agency (DNA). The documentation and code

should be available to users in the defense community in the
near future.

The NUIDEA Code was developed as z systems-like code
for the investigation of nuclzar weapon environments from single
or multiple bursts. The code includes phenomenology models of
nuclear radiation, blast, and thermal radiation. The code in-
corporates portiong of the Air Transport of Radiation (ATR)(7)
Code and the Low Altitude Multiple Burst (LAMB) (®)code.

5.1 CALCULATIONS

A matrix of calculations were performed using the NUIDEA
Code for weapon yields frcm 1 KT to 10 MT and for three burst heights
in meters, 1 meter, 60 Wl/3 m, and 225 w3 n (where W is the yield
in kilctons). The scaled burst heights were selected as those burst
heights which preclude fallout and optimize blast effects (>10 psi),
respectively. Several components of the delayed radiation environ-
ment were tabulated including tissue dose for delayed gamma rays,
delayed neutrons, and secondary gsmme rays from delayed neutrons.
The prompt radiation dose, blast c¢verpressure, and thermal exposure
are also provided by the NUIDEA Code and have been tabulated as
well, For each weaporn yield considered, the fission yield was as-~

sumed to be 80% of the total yield. The ground elevations for these
cases wag 388 meters.

5.2 RESULTS
§.2.1 Radiation Enviroaments {

Figures 7, §, and 9 show the radiatiorn eavironmsnts at
15300 m ground range versus yleld for the three burst heights,

»
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ragpectively. The figures show all the components of the ini-

tial radiation dose including both prompt and delayed components.
It is observed for the ground burst cassz that for yields greater
than a few hundred kilotons the delayed gamma dose dominates the

total dose. However, for the 60 Wl/3 case the delayed gamma douse

exceeds the total prompt dose only for yields greater than 2 MT.
For the 225 wt/3 case, the prompt dose is always the predominate
component of the total dose.

Figures 10, 11, and 12 show a similar set of curves
for a ground range of 2500 meters. The same observations apply
as in the 1500 meter ground range cases.

5.2.2 Blast Overpressure

Figure 13 chows the maximum overpressure from a 1 MT
burst versus ground range for the three burst heights. The
ground range for a given overpressure can be determined for
other yields based on the standard cube root scaling laws

R, - ong (;;5) 1/3

where GRl is the ground range at yield L

GR, i3 the ground range at yield Wy

5.2.3 Thermal Exposure

Figures 14, 15, and 16 show the total thermal exposure
versus ground range and weapon yield for the three respective
burst heights.
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6. TRANSPORT THROUGH STRUCTURES

This chapter presents results of calculations of the
transport of neutrons and gamma rays through structural materials.
The transport of neutrons include the production of secondary

garma rays and their transport. Results for three types of cal-
culations are presented

1. One-dimensional slab transport calculations,

2. Sensitivity calculations for transport through
concrete, and

3. Ring source effects.
The struciures considered in the “leculations include
* Concrete slabs,

® Wood frame walls,

o Brick veneer walls,

® Shingle roofs, and

' Built up, asphal= roofs.
Forward and adjoint one-dimensional transport calculations were
performed using the AHISN(3) discrace ordinates code. Tha for-
ward calculations used a source distribution determined directly

from the free field calculatious reported in Crapter 4. All cal-
culations used cross aections from the DNA few group iibrary.

6.1 TKANSPORT THROUGH CONCRETE

6.1.1 Councrete Compositions

Concrete does not uriquely specify an elemental com-
position in the sunse required for radiarion transport analysis.
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Variations in moisture content, regional variations in the
constituents of concrete, and the basic type of concrete all
will effect the shielding properties. Our approach, therefore,
was to select several basic types of concrete for analysis and
to account for variations within a particular type by perturba-
tion methods.

The elemental composition for several important types
of concrete are listed in Table 5.

6.1.2 Source and Response Functions

The source used for the forward one-dimensional slab
transport calculations was a '"'shell source'" taken directly from
the air trangport calculations reported in Chapter 4. The
ANISN Code provides the capability of coupling calculations in
this manner. The assumptions made in coupling the calculations
in this manner is (1) the flux incident on the slab is not per-
turbed by the presence of the slab and (2) the radius of the
coupling surface is sufficiently large and lateral transport
sufficiently limited that the switch from spherical to slab
geometry is apprcpriate.

The response function which was also used as the
source distribution for the adjoint calculations was the
Snyder Neufeld neutron response and the Henderson Tissue gamma
ray respongse function (refer back tu Chapter 4, Section 4.1.3
end Tables 2 ard 3).

6.1.3 Forward Transport Results

The total dose transmission as a funceion of areal
mass is plotted in Figure 17 for the seven types. of concrete
listed in Table &. Figure 18 shows the ratio of the neutron
dose to the gamma ray dose a8 a function of areal mass. Both
the transmission and the n/y ratio can be seen to vary sub-
stantially with concrete type even at the same areal mass.




‘Wopigwodnoy Lyy(yaes Curpreryy .-!&._.c

B . . . . . . . o /w3 i
4 4 [ 4 | 29 Yo'y €€t 110 [ {94 11%usg
(S-)vi9°¢ el
(§-)ez2y {$-)995°1, {¥-)90¢ A
(<-)eigy (S-Igve°9 13
{y-)50¢ 6 F-Ivly2 | $9
(9-)EEC ¢ {2-2g99°¢ (z-)tst ¢ (T-)togt {y-)zr-g (v-3y02°2 LT
(9-J98C "¢ ({3374 18] {4-)2¢8°9 ($-)1919 b |
(6-)zhe8  ({91< 3 (Yy~3510°1 3
(9~194¢°6 (A LTS AL (C-reeo'tr (E~)ege’ {€-)epc 2 (€-)ute-? v
{(£~)g5¢€°¢ (r-dvgict (y~)orz 'y (y=)Civ'n {y-)ogey°1t €=y it
9-)es¢-¢ (C-)ey0°t 12
(z-)e1°t {y-)£00°1 (t-)e6¢ 2
@-)zet 1 (€-)ssz°2 (c-lees t (€-)tis ¢ €-reeee {t-)ce6 2 1491 1TA »
{€-)62°1 (£-)£99°3 :”Lmnc.n {€-)g0g-y tc-Jge (2~)ns 1 (C-)ece~y £
{Q-)ewi e {t-)esz°y (z-r599°2 {(T-)rouy 't (Z-)e8c- ¢ {(e-}eva¢ (2-)roe-y 0
{€~)96°9 {z-)160"2 {Z-)ege €-3cec 9 (€-)cesy {E-9s 2 -6t ]
»451 sd4L i.sv. adhy g7 edly TR addy, R wify ¥ odkg 0 »dAy namayy
suyavadiag slurtound (ausg sSurgoung gesag 1y y8uoy K1voppao Lieuppsg
puv 237uc08vq pue agisuloy
P e e ————
WL,GING ,
sﬂﬂﬂ.mw £378uaq opmay
‘8u0rlrsoduwng sjsaduoy g ER LA

€.

65




pha ‘ -
;3” Mgz
(5:4
e & -
g H -
s
-4
Q
a
§ 4
z Ty
= s
= 01l " I
13
< - -
8 p- m -y
-d
< - -
o
Q
| P oy
2
4
P s
SYMBOL CONCRETE TYPE r
-3 ORDINARY TYPE 3 E
& ORDINARY TYPE & g
A4 MAGNETITE
MS2 MAGNETITE w/STEEL PUNGCHING
b LS UIMONITE w/STEEL PUNCHING -
S SSRPENTINE
T TSE
=
i i ) I
a.01g 20 PP ) 20 proy
AREAL #1435 (GM/end)
Figure 17. Transmission Feetors through Yariocus Coencvetes.

6¢




e

4

10
_ ! | 1 I 4
‘r g2
- 95 i
o A —
3 7‘”
3 M2
a Ls
vl
I s -
2 T
oY T
s
< 3
£
<
*  ji..
% an_
g [ s i
A -
§
= -
G -y
g 3
=
 SYMEGL  CONSRETZTVRS ]
3 CHOINARY TYFER
& CORDINARY TYPE 4
L om MAGNETITE
33 MAGREVTTE w/STEEL PURCHING N
L5 LISSONITE w/STEEL PUNCHING
8 SERPENTINE
T T8¢
1 i " . il
g it &i & 82 100

Figure 18.

N . IS SRPE NS e S

ARZSL MASS Qioml

Tranawiveed Neutron Dose to Gamma Ray Dose

Batle chrough Varicus Concretes.

67

00000 000 A




6.1.4 Perturbation Calculations

In order to investigate the sensitivity of the trans-
mitted dose through concrete to the concrete composition, a
series of perturbation calculations were performed using the
SAIDOT Code(s). The sensitivity calculation is based on the
perturbation relationship

® . g¢*§AL¢2

where R is the transmitted dose for a reference problem,
¢ 1is the flux for the reference problem,
o7 is the adjoint flux for the reference problem,
AL 1is the "perturbation'" to the transport operator, and
AR 1is the '"perturbation' to the transmitted dose.

In the present calculations the perturbation to the transport
operator, 4L, has been considered to be a change in the councrete
composition. By using the perturbation relationship and having
calculated the forward and adjoint fluxes for a veference problem,
the transmitted dose for any concrete composition can be gstimated
as long as the difference in the concrete compositicn is net too
different from the composition of the reference probliem. If we
define the sensitivity function for a particular element to be

S; = (87,040)
where oy 1is the microscopic cross section for element i,
# elements
then R* = RAR = R[1¥) (N]-N,)S,]
i=1
where Ni is the atomic density of element i in the reference

concrete and

N{ 1is the atomic drasity of element i in the "perturbed”
case.
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Table 6 gives the sengitivity function S; as a func-

tion of concrete thickness using type TSF concrete as a reference
case.

The range of applicability for the perturbation can be
tested by using the perturbation results to predict the trans-
mission factors for the concrete compositions listed in Table 5
and comparing with the transport results. Table 7 shows the
fractional error of the perturbation theory prediction when com-
pared with the transport (ANISN) results. Using TSF concrete as
& base case, perturbation theory can be seen to accurately pre-
dict the transmitted dose for ordinary concrete Type 03 and Type
04, as well as for Serpentine concrete. However, perturbation
theory does not give an accurate prediction for the Magnetite
concrete, and Limcnite with steel punchings. Perturbation theory
fails for these cases because the iron loading for these con-
cretes is so high. However, it appears that perturbations from
TSF concrete can be quite accurately predicted for concrete con-
taining less than about 5 weight percent iron. In order to
treat the more heavily iron loaded concretes with perturbation
theory would require a reference fluxes for a more heavily
loaded concrete. The results based on TSF concrete should be
accurate for most concretes commonly encountered in the con-
struction industry.

6.2 TRANSPORT THRQUGH OTHER STRUCTURAL ELEMENTS

The transmission factors for other structural elements
comuonly found in the building industry have also been calculated.
These structural elements include roof and wall constructions
commonly found in residential homes. These include both wood
and brick extericr walls, the shingle roof, and the builc up
agphalt and gravel roof. Figure 19 shows the materials and con-
figuration of these structural elements. Ia order for these
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Table 6.

Sensitivity Functions for Various Elements
in Concrete (Based on Type TSF Concrete).

Sensitivity Function (

Element 12.16 gu/ca® 46.94 ga/cm? 93.88 gm/cm’

g -8.70 -17.9 -37.8

c -3.92 -11.4 -21.6

0 ~4.09 -12.4 -24.3
Mg -4.33 -15.9 -34.3
Al “3.68 "16.7 ‘3309
s1 -3.88 ~15.9 ~36.4

s -16.7 -67.8 -153.

R -2.16 -10.8 -53.8
Ca -4.43 -20.7 -52.6
TL 0.497 27.1 2.049
v -3.79 2.43 -55.1
cr -1.9 4.88 -20.6
Fe ~4.03 -11.7 -56.8




L

Table 7.

Error Analysis for Perturbation Results.

Practional Errors, Rpez ~ R’I‘rnnsp ore
Transport

Concrete Type 5.80 om 20.32 om 40.64 cm
Ordinary Type 03 -0.0025 g.0c81 0.010
Ordinary Type 04 ~(.0075 -0.024 -0.060
Magnetite 0.035 0.46 0.39
Magnetite with -
Steel Punchings 0.071 0.77 0.54
idminite with
Serpentine -0.010 -0.0031 ~0.069
TSF —_—
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configurations to be amenable to one-dimensional tranaport
analyses, the wood studs were approximated by a homogenous
region of 1/8 the demsity of wood (the ratioc 2:16). The re-
sults of the one-dimensional transport calculations for these
configurations are summarized in Table 8.

6.3 RING SOURCE EFFECTS

The calculations reported in Sections 6.1 and 6.2
for dose transmission through concrete slabs and other build-
ing structural elements have been for a point source above an
infinite slab. Since adjoint calculations were performed for
the concrete slabs it is particularly convenient to fold these
adjoint fluxes with the incident fluxes from other source con-
figurations. The ring source is of particular interest since
it has been the recommended source configuration for civil
defense shielding analysis. The ring source results presented
here are based on a rotation of the point source fluxes incident

on the slab followed by a convelution with the slab response
furnction.

6.3.1 Source Rotation and Lengendre Expansion

. The problem is to calculate the flux on the axis of
a2 ving sourcze in air, given the flux from a2 point source in air,
This can be determined by a straightforward rotation of coordin-

ates. Let [¢] represent a vector whose elements are the flux
moments for the point source,

powe. oy

(el = -

-
{
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Table 8. Results of Walls and Roofs Calculation.
Dose, rad
source neutron
Ganma Dose
Configuration Neutron Zay Total Transzission
Wall:
Wood Exterior 3.68(-22) 1.46(-22) 5.14(~22) 0.37
Brick Exterior 2.46(~22) 1.01(-22) 3.48(-22) 0.25
Roof:
Shingle 2.86(-22) 1.48(~22) §4.34(~22) 0.32
Built Up 2.28(-22) 1.50¢(~-22) 3.78(~22) 0.28
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where ¢ ‘:‘f@(u)Pz(u)du :

- L

u = cosine of the angle measured from the
line to the source

P, are the Legendre polynominals.

Also, let [?5] represent the corresponding Legendre expansion
of the flux for the ring source, then

N
[¢] = M[s]

oL %
where ¢ MM. é
and

. +1 2w N
N
M”‘ '2 ﬁ#[ Pk(u)du f?z(ccs 8)dé¢
. -1 0

whera ?9' and ¢ are illustrated below.

RING SQURCE
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A~
8 can be determined frm EG' §, and ¢ as follows.

", ",
U = cos ac cog & + sin 80 sin 9 cos ¢ .
6.3.2 Ring Scurce Results

The source rotatiom and folding with the adjoint flux
was performed for three thicknesses of TSF conzrete and for ring
source delimatrion angles, 84, from 0 to 90° (0° corresponds to
the point source). The ratio of the transmitted dose from the
ring source to the transmitted dose from the point source are
plotted in Figure 20 as a function of the cosine of the declina-
tior« angle. In general, the transmitted dose decreases with
increasing declination angle due to the effectively increased
average path length through the slab. It is interesting to note,
however, that for the thimmer slabs, build up effects cause a
small increase in the transmitted dose over the first few degrees
of declination. These results used the infinite air angular
fluxes at 1200 m.
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7. CONCLUSIONS AND RECOMMENDATIONS

The relativa importance of delayed radiation for civil
defense applications for high yield weapons has been demonstrated.
These data are presented in Chapter 5. The angular dependence of
the delayed radiation have not been studied in detail, however,
vreliminary indications are that the angular distributions tend
to be more forward peaked then the prompt radiation and, there-
fore, could have some impact on the wall and roof barrier factors
for INR. These effects should be evaluated.

The use of newer cross section data to determine the
free field environments from prompt radiation indicates some
differences relative to the ENDF/B-II data. These differences

should be indicated in the final methodology which is to be used
for INR applications.

It appears that the selective use of perturbation tech-
niques is more than sufficient to determine that variation (either
an incresse or decrease) in the initial protection factor for
changes in material compositions based on elemental differences.
It is recommended that provisiong be made in the INR methodology
for inclusion of procedures to estimate the effects of both ele-
mental compusition and construction techniques on predicted values
of IPF. These techniques could quite easily be developed by using
the data in Chapter 6, along with sjome supplementary calculations.
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